تعطي هذه الطريقة نتائج أكثر دقة بالمقارنة مع طريقة شبه المنحرف، تعتمد هذه الطريقة على استبدال كل قطاع من المنحني المدروس محدد بثلاثة إحداثيات رأسية متجاورة تفصلهم مسافات متساوية، بتابع منحني من الدرجة الثانية معادلته:

Y=a.x2+b.x+c

لاستخراج معادلة سيمبسون I نأخذ قطاعاً من منحنٍ وهو ABC محدد بثلاثة احداثيات رأسية متوضعة على مسافات متساويةd من بعضها، تحسب مساحة السطح المحدد بالنقاط x0,A,B,C,x2,x0 تقريباً كما يلي:

image 432

image 433

 

 

تحدد قيم الاحداثيات الرأسية بعد تعويض قيم الاحداثيات الأفقية المقابلة لها في معادلة التابع من الدرجة الثانية:

 

image 434

 

وعادة معادلة سيمبسون لقطاع واحد بطول (أو قطاعين طول كل منهما) تأخذ شكل:

image 435

 

إذا كان مجال منحني التابع كبير أو إذا أردنا الحصول على نتائج أكثر دقة عندئذ تجزأ قاعدة المنحني إلى عدد زوجي من الأجزاء أو القطاعات ذات الأطوال المتساوية، تحدد المساحة الكلية بجمع المساحات الجزيئة المحددة مع العلم أن كل مساحة جزئية محصورة بين ثلاثة إحداثيات رأسية متتالية بطول كما في الشكل التالي

Create new account

Download eMufeed Android Application Now

 

للاعلان